Регуляторы мощности на тиристорно-транзисторном генераторе

С появлением тиристоров появилась удобная возможность регулировать мощность нагрузки, работающей от переменного напряжения. Придумано множество различных схем для управления тиристорными ключами, коммутирующими нагрузку. Например, в схеме регулятора мощности на рис.1 силовым симистором управляет генератор на тиристорно-транзисторном ключе, рассмотренный в предыдущих статьях [1, 2].

Устройство позволяет при тщательном подборе конденсаторов С1 и С2 добиваться плавной регулировки мощности нагрузки Rh с помощью R6.

Устройство работает следующим образом. При включении питания (12 В для цепей управления и 220 В для нагрузки) от "+" источника 12 В заряжаются конденсаторы С1 и С2, а положительное смещение на базе транзистора VT1 открывает его переход коллектор-эмиттер, через который и резисторы R2, R6 напряжение поступает на управляющий электрод тиристора VS2. При токе, большем тока удержания, тиристор VS2 открывается и разряжает конденсатор С1 через управляющий электрод симистора VS1, открывая его.

При закрывании тиристора VS2 происходит заряд конденсатора С1, и ток заряда течет через управляющий электрод симистора VS1 в обратном направлении.

Угол открывания VS1 определяется моментами открывания и закрывания тиристора VS2, зависящими от емкостей конденсаторов С1, С2 и сопротивления регулятора R6. При изменении сопротивления R6 угол сдвигается.

В схеме регулятора мощности на тиристорах (рис.2) напряжение питания подается в схему задаю-

Источник: Журнал Радиомир № 9 за 2009

Регуляторы мощности на тиристорно-транзисторном генераторе

Массовый ежемесячный научно-технический журнал

——

Схемы источники питания
Журнал Радиомир № 9 за 2009Регуляторы мощности на тиристорно-транзисторном генераторе
Регуляторы мощности на тиристорно-транзисторном генераторе

щего генератора по бестрансформаторной схеме. Избыток напряжения гасится балластными резисторами R4 и R5. Управляющее напряжение (30 В) стабилизируется стабилитроном VD7. У такого источника питания получается "падающая" характеристика, т.е. с увеличением тока нагрузки напряжение падает. Ток короткого замыкания источника составляет 15... 18 мА и зависит от сопротивлений R4 и R5.

Угол открывания тиристоров VS1, VS2 определяется моментом открывания транзистора VT1 и величиной напряжения на эмиттере, при котором происходит пробой стабилитрона VD10 через управляющий электрод тиристора VS4. Время переключения транзистора VT1 задается регулятором R6 и емкостями конденсаторов СЗ и С2 (последний может даже не устанавливаться).

Тиристоры в рассмотренных схемах берутся с токами удержания 2... 8 мА, но могут "раскачиваться" при токах до

12 мА за счет конденсаторов большей емкости. Поэтому для повышения чувствительности переключающего тиристора VS3, защитный резистор между катодом и управляющим электродом можно не устанавливать или увеличить его сопротивление (более 2 кОм).

Регулировку мощности нагрузки производят переменным резистором R6 типа ППЗ-43, а резисторы R7 и R9 служат как построечные. Их после наладки можно поменять на постоянные. Тиристоры VS1, VS2 — импульсные, типа КУ202 или аналогичные с классом напряжения не менее 400 В. Транзистор VT1 — КТ645, КТ815, КТ602, КТ940, конденсаторы С2. СЗ — К73-17.

Неплохой регулятор мощности получается по схеме на рис.3. Здесь в схему управления тиристорно-транзисторного генератора введена оптопара VU1 типа АОУ103В1. Светодиод HL1 в управляющей цепи тиристора VS3 выполняет функцию стабилитрона и одновременно служит контрольным элементом во время наладочных работ. Принцип работы устройства аналогичен предыдущей схеме Регулятор собран на печатной плате, чертеж которой представлен на рис.4.

Простой регулятор мощности с использованием динисторов изображен на рис.5. Он обеспечивает напряжение регулирования 30..220 В. Угол открывания тиристоров VS2, VS3 определяется временем заряда конденсаторов С1 и С2 до напряжения пробоя динисторов VS1 и VS4, которое задается сопротивлением R5.

Для плавности регулирования необходимо подобрать тиристоры VS2 и VS3 с одинаковыми токами открывания, хотя это достаточно трудоемко. Упрощенно следует подобрать тиристоры с одинаковыми сопротивлениями цепей катод-управляющий электрод.

Устройство можно применить для регулирования яркости осветительных ламп накаливания, но при напряжении менее 30 В наблюдается неустойчивость напряжения и могут

возникнуть мерцания ламп. Поэтому стоит ограничить диапазон изменения сопротивления регулятора R5 или совместить его с выключателем SA1, отключающим управляющую цепь. Печатная плата устройства представлена на рис.6.

Двухполупериодный регулятор мощности со схемой управления на одном тиристоре изображен на рис.7. Нагрузка Rh подключается к источнику переменного напряжения через выпрямительный мост, а вторая диагональ моста закорачивается через тиристорный управляемый ключ VS2.

В схему управления вместо динистора КН102 включен его аналог, собранный на импульсном тиристоре КУ101Е и включенном в цепь его управляющего электрода стабилитроне VD5.

С помощью этой схемы можно управлять нагрузкой, в качестве которой служит первичная обмотка сетевого трансформатора (на 220 В) с диапазоном регулирования напряжения 160. ..220 В.

Такое регулирование эффективно изменяет выходное напряжение вторичной обмотки этого трансформатора.

Устанавливать напряжение на первичной обмотке трансформатора меньше 160...170 В не рекомендуется, поскольку с уменьшением тока через управляющий электрод тиристорного ключа он может работать нестабильно.

Литература

1.  Радиомир, 2009, №7, С.14.

2. Радиомир, 2009, №8, С.26.

А.АЛЕКСЕЕВ, В.АЛЕКСЕЕВ, г.Пермь.

Регуляторы мощности на тиристорно-транзисторном генераторе
Регуляторы мощности на тиристорно-транзисторном генераторе

Регуляторы мощности на тиристорно-транзисторном генераторе

Рейтинг@Mail.ru
Яндекс.Метрика