Схемы источники питания

Управление высокочастотной микросваркой

Высокочастотная микросварка предназначена для сварки металлов, пластмасс, спайки медных проводов и т.п. Отличительные особенности использования высокочастотного тока — качественный шов, устойчивое горение дуги, пониженный расход электроэнергии и плавное регулирование сварочного тока.

Регулировку тока в традиционных сварочных аппаратах выполняет балластный реостат, служащий для получения необходимой для сварки "падающей" нагрузочной характеристики. Значительная часть электроэнергии в такой системе расходуется на нагрев реостата.

Второй существенный недостаток классической сварки — необходимость повышенного напряжения для возникновения устойчивого зажигания дуги.

Применение инверторного источника с полевыми транзисторами в качестве электронных ключей позволяет снизить сварочное напряжение при улучшении остальных показателей.

Электронная схема устройства микросварки автоматически формирует нагрузочную характеристику требуемого вида за счет обратной связи по напряжению и току.

Регулировка обратной связи позволяет выставить любой наклон нагрузочной характеристики. Схемой предусмотрено автоматическое отслеживание температуры полупроводникового преобразователя и своевременное снижение тока нагрузки с цепью защиты от перегрева ключевых транзисторов. Автоматическое регулирование скорости подачи сварочной проволоки в зависимости от нагрузки снижает ее расход. Работа электронного регулятора основана на преобразовании с помощью ключевого инвертора постоянного напряжения в импульсное с регулированием скважности.

Устройство (рис.1) состоит из:

- генератора прямоугольных импульсов на микросхеме аналогового таймера DA2;

эммитерного повторителя на транзисторе VT1;

- инвертора на полевых транзисторах VT2.. .VT4;

регулятора скорости подачи сварочной проволоки на элементах DA5, VT5;

- трансформаторного блока питания с мощным диодным мостом Т1, VD5, VD6.

Задающий генератор собран на микросхеме таймера DA2. Питание генератора стабилизировано микросхемой DA3. В крайнем нижнем положении движка резистора R2 длительность импульса на выходе 3 генератора DA2 максимальна, как и величина сварочного тока, в верхнем положении — минимальна. Предельная мощность определяет-

ся используемым трансформатором Т1 и максимальным током стока группы полевых транзисторов VT2...VT4. Величина импульса тока, возникающего при контактной сварке металлов, может достигать десятков ампер. Поэтому транзисторы включены в параллель с креплением на общем радиаторе. Выводы стоков и истоков транзисторов соединяются в общие шины, выходные соединения выполняются многожильным проводом сечением не менее 6 мм2.

Стабилизация выходного напряжения реализована цепью отрицательной обратной связи. Напряжение ОС снимается со сварочной цепи и подается на управляющий вход параллельного стабилизатора DA1, включенного в цепь управления (на вход 5) таймера DA2. При возрастании выходного напряжения повышается управляющее напряжение на входе 1 DA1, он сильнее открывается и шунтирует вход

Источник: Журнал Радиомир №12 за 2010

Управление высокочастотной микросваркой

Массовый ежемесячный научно-технический журнал

——

Журнал Радиомир №12 за 2010 Управление высокочастотной микросваркой
Управление высокочастотной микросваркой

5 DA2, что приводит к сокращению длительности выходного импульса генератора и уменьшению напряжения электросварки. При снижении выходного напряжения происходит обратный процесс, т.е. создается режим стабилизации напряжения на нагрузке. Требуемая для сварочных работ характеристика устанавливается резистором R6 за счет регулировки напряжения ОС, поступающего на DA1.

Падение напряжения на сопротивлении шунта RS1, пропорциональное нагрузочному току, через делитель R14 подается на вход управления параллельнного стабилизатора DA4, включенного в базовую цепь ключа VT1. При перегрузке напряжение на RS1 увеличивается, DA4 открывается сильнее и шунтирует базовую цепь VT1. Транзистор закрывается, и прохождение импульсов с мультивибратора на затворы транзисторов VT2...VT4 прекращается, что позволяет ограничить ток короткого замыкания в сварочной цепи.

Полевые транзисторы VT2...VT4 работают в ключевом режиме и открываются при поступлении импульсов на затворы. Для ускорения их закрывания после окончания импульса цепи затворов замыкаются на землю через внутренний транзистор таймера DA2. Импульсный диод VD3 устраняет самопроизвольное открывание транзисторов.

Температура полевых транзисторов при рабочем токе не должна превышать паспортную. Контроль их температуры осуществляет терморезистор RK1, установленный на радиатор. Повышение температуры приводит к снижению сопротивления терморезистора, увеличению напряжения на выводе 1 DA1, большему его открыванию, снижению частоты генератора DA2 и соответствующему уменьшению выходной мощности.

Для устранения окислительных процессов при сварке биметаллической проволокой без покрытия производится подача инертного газа в ме-

сто сварки с помощью клапана К1, установленного на трубопроводе.

Фильтр C7-L1-C8 устраняет помехи под нагрузкой и препятствует снижению напряжения в промежутках между импульсами, предотвращая разрыв сварочной дуги Для контроля наличия выходного напряжения служит светодиод НL1.

Большинство элементов блока управления размещены на печатной плате размерами 104x65 мм (рис.2). Печатная плата и силовой трансформатор расположены в металлическом корпусе в раздельных отсеках. Регуляторы тока, скорости и характеристики с коммутационными элементами и амперметром расположены на передней панели прибора, вентилятор (при его установке) — на задней стенке.

В устройстве использован силовой трансформатор типа ОСО-0,4 или ТС320. Трансформатор разбирается, все вторичные обмотки удаляются и наматываются новые, жгутом из нескольких обмоточных про-

Управление высокочастотной микросваркой
Управление высокочастотной микросваркой

водов (для лучшего заполнения каркаса) с общим сечением 3 мм2. Количество витков определяется размерами каркаса (до заполнения). Обмотки включаются последовательно. Диоды VD5 и VD6 установлены на отдельной плате. На них одеты радиаторы-"флажки" размерами 50x100 мм. Силовые цепи, обозначенные на схеме утолщенными линиями, выполняются многожильным проводом в виниловой изоляции сечением не менее 4 мм2. При сварке сварочной проволокой 00,6 мм (в полуавтомате) она подается в место сварки с помощью механизма, состоящего из электродвигателя подачи и механизма протяжки. Кнопка SB1 "Пуск" расположена на шланге подачи проволоки и инертного газа.

Схема питания электродвигателя подачи М1 состоит из регулятора скорости на аналоговом стабилизаторе DA5 и усилителя тока на транзисторе VT5. При контактной сварке требуются круглые медно-графитовые электроды 1.. .3 мм с заостренным концом для удобства сварки и зажимное устройство.

По возможности, схему следует дополнить вентилятором от блока питания компьютера, подключив его к цепи 12В. Клапан подачи инертного газа — промышленный. Амперметр РА1 (с внешним шунтом на 75 мВ и шкалой на 50... 100 А) — типа М4200. Постоянные резисторы — типа С2-29, переменные — СПО-0,5; СПЗ. Возможные замены элементов приведены в табл.1, а в табл.2 — подходящие типы полевых транзисторов.

Дроссель L1 выполнен на ферритовом кольце (2000НМ) диаметром 42 мм. Обмотка состоит из 30...40 витков многожильного провода сечением 4 мм2.

Наладка устройства микросварки заключается в исходной установке скорости подачи проволоки резистором R10, характеристики тока микросварки — R6, регулировки тока — R2 и защиты от залипания электрода — R14. Элементы схемы после непродолжительной работы следует проверить на нагрев, при температуре выше 80°С необходимо увеличить площадь радиаторов.

Пусковая кнопка SA1 включает клапан К1 и генератор на микросхеме DA2, при этом на сварочном электроде изначально отсутствует напряжение. Появление сварочного напряжения с задержкой, зависящей от времени заряда конденсатора СЗ, вызывает последующее вращение электродвигателя подачи проволоки М1 со скоростью, зависящей от положения движка резистора R10.

Во избежание ожога глаз ультрафиолетовым излучением сварочной

дуги при работе используются защитные сварочные очки с УФ-филь-тром.

-

В.КОНОВАЛОВ, А.ВАНТЕЕВ, Творческая лаборатория "Автоматика и телемеханика",  г.Иркутск.

Управление высокочастотной микросваркой

Управление высокочастотной микросваркой

Рейтинг@Mail.ru
Яндекс.Метрика